

Square Roots

The square of a number is that number multiplied by itself. For example, six squared $= 6^2 = 6 \cdot 6 = 36$. (Recall that the square of 6 tells us the area of a square with sides 6 units long.)					
Taking a square root is the opposite operation to squaring: the square root of 36 is the number that when squared, gives you 36.					
There are actually two such numbers: 6 and -6. The positive one, 6, is the principal square root of 36. We use the " $$ " symbol (called the "radical sign" or "radix") to signify the principal square root of a number. For example, $\sqrt{25} = 5$ because $5^2 = 25$.	The words "radish" and "radical" both come from the Latin word <i>radix</i> , meaning root .				
Taking a square root allows us to find the side length of a square when its area is given.					
Here is a way to remember what a square root is. In the picture on the right, the area of a square is written inside the square and the length of the side is written to the side: 49 7					
Now, imagine the square is a radical sign that "houses" the number for the area:					
To find the (principal) square root of a number, think of a square with that area, and find the side length of that square.	√ <u>49</u> = 7				

1. Find the (principal) square roots.

a. $\sqrt{100}$	b. $\sqrt{64}$	c. $\sqrt{4}$	d. $\sqrt{0}$
e. $\sqrt{81}$	f. $\sqrt{144}$	g. $\sqrt{1}$	h. $\sqrt{10,000}$

2. It is especially easy to find square roots of numbers that are perfect squares: numbers we get by squaring whole numbers. For example, 49 is a perfect square because it is 7².
Fill in the list of perfect squares from 1² to 20² at the right:

3. Find the square roots of these perfect squares.

a. √169	b. √900
c. $\sqrt{225}$	d. $\sqrt{121}$
e. $\sqrt{441}$	f. $\sqrt{8,100}$
g. $\sqrt{324}$	h. $\sqrt{400}$
i. √6,400	j. √25,600
k. $\sqrt{16,900}$	I. $\sqrt{1,000,000}$

x	x^2	x	x^2
1	1	11	
2	4	12	
3	9	13	
4		14	
		15	
			256
	49		289
8			324
9			