Square Roots

The square of a number is that number multiplied by itself. For example, six squared $=6^{2}=6 \cdot 6=36$. (Recall that the square of 6 tells us the area of a square with sides 6 units long.)
Taking a square root is the opposite operation to squaring: the square root of 36 is the number that when squared, gives you 36 .

There are actually two such numbers: 6 and -6 . The positive one, 6 , is
the principal square root of 36 . We use the " $\sqrt{ }$ " symbol (called the "radical sign" or "radix") to signify the principal square root of a number. For example, $\sqrt{25}=5$ because $5^{2}=25$.

The words "radish" and "radical" both come from the Latin word radix, meaning root.

Taking a square root allows us to find the side length of a square when its area is given.
Here is a way to remember what a square root is. In the picture on the right, the area of a square is written inside the square and the length of the side is written to the side:

Now, imagine the square is a radical sign that "houses" the number for the area:
To find the (principal) square root of a number, think of a square with that area, and find the side length of that square.

1. Find the (principal) square roots.

a. $\sqrt{100}$	b. $\sqrt{64}$	c. $\sqrt{4}$	d. $\sqrt{0}$
e. $\sqrt{81}$	f. $\sqrt{144}$	g. $\sqrt{1}$	h. $\sqrt{10,000}$

2. It is especially easy to find square roots of numbers that are perfect squares: numbers we get by squaring whole numbers. For example, 49 is a perfect square because it is 7^{2}.
Fill in the list of perfect squares from 1^{2} to 20^{2} at the right:
3. Find the square roots of these perfect squares.
a. $\sqrt{169}$
b. $\sqrt{900}$
c. $\sqrt{225}$
d. $\sqrt{121}$
e. $\sqrt{441}$
f. $\sqrt{8,100}$
g. $\sqrt{324}$
h. $\sqrt{400}$
i. $\sqrt{6,400}$
j. $\sqrt{25,600}$
k. $\sqrt{16,900}$
I. $\sqrt{1,000,000}$

