## Scientific Notation: Small Numbers

When writing very small numbers in scientific notation, the exponent is negative. Recall that negative exponent does not signify a negative number, but a fraction: a reciprocal of the corresponding power of ten with a positive exponent. For example, $10^{-4}=\frac{1}{10^{4}}=\frac{1}{10,000}$. As a decimal, this is 0.0001 .

Example 1. To write 0.00034 in scientific notation, we need to use 3.4 as the decimal that is multiplied by a power of ten. (Why?) Now note in which place the digit 3 is: it is in ten-thousandths place, which is the fourth digit after the decimal point. This means we use $\frac{1}{10,000}=\frac{1}{10^{4}}=10^{-4}$ as the power of ten. So, $0.00034=3.4 \cdot 10^{-4}$.

Example 2. To write $7.64 \cdot 10^{-6}$ in decimal notation, we note that the digit 7 has to be in the place indicated by the power of ten, which means 7 will be in the millionths place. The other digits will follow. The millionths place is the sixth decimal digit after the decimal point. So, $7.64 \cdot 10^{-6}=0.00000764$.

1. Write the numbers given in scientific notation in decimal notation, and vice versa.

| Scientific Notation | Decimal notation | Scientific Notation | Decimal notation |
| :---: | :---: | :---: | :---: |
| $3 \cdot 10^{-5}$ |  |  | 0.0000002388 |
|  | 0.0008 | $8.2 \cdot 10^{-4}$ |  |
|  | 0.00000203 |  | 0.00000000308 |
| $6.108 \cdot 10^{-8}$ |  | $4.539 \cdot 10^{-7}$ |  |

2. Eric said that $7.61 \cdot 10^{-9}$ has a total of nine zeros, like this: 0.00000000761 . Is he correct?
3. Compare the numbers, writing $<$ or $>$ in the box. How can you tell which of them is greater, without writing them in decimal notation?
a. $2 \cdot 10^{-7} \square 5 \cdot 10^{-8}$
b. $3 \cdot 10^{-9}$ $\square$ $3 \cdot 10^{-7}$
c. $7.82 \cdot 10^{-5}$ $\square$ 0.000075
d. $4 \cdot 10^{-4} \square 0.00046$
e. $7 \cdot 10^{-4} \square$
0.0065
f. 0.00000078 $\square$ $2.8 \cdot 10^{-8}$
4. Write in order from smallest to greatest: $\begin{array}{llllllll}5.6 & 10^{7} & 10^{-6} & 0.0003 & 10^{8} & 6 \cdot 10^{7} & 0.00002 & 9 \cdot 10^{-7}\end{array}$
