Laws of Exponents, Part 1

1. a. In the expression $2^{4} 2^{3}$, both powers have the same base of 2 . See if you can find a way to write this expression in a shorter form, as a single power of 2 (using only one exponent).
Hint: Expand the powers as repeated multiplications..
b. Do the same with $3^{2} 3^{4}$.
c. Do the same with $a^{3} a^{9}$.
2. Are the following statements true? If not, correct them.
a. $2^{4} 2^{2}=2^{8}$
b. $2^{3} 2^{3}=4^{6}$
c. $10^{3} 10^{2}=10^{5}$
3. Expand the powers by writing out the repeated multiplications. Then simplify. Lastly, write the entire expression as a single power of 4 .
4. Simplify the expression, writing it as a single power of 5 .

$$
\frac{5^{5}}{5^{2}}=\square=
$$

5. Using the same technique as above, write the expression $\frac{x^{6}}{x^{2}}$ as a single power of x.
6. Sandra believes that $\frac{2^{5}}{2^{4}} \cdot 2=1$. Is she correct? If not, explain why not.
7. Are the following statements true? Use the table of powers of 3 to help.

Hint 1: Often estimation is sufficient to see that a statement is wrong.
Hint 2: To check the veracity of a division statement, you can also use multiplication.
a. $3^{3}+3^{4}=3^{7}$
b. $3^{3} \cdot 3^{4}=3^{7}$
c. $\frac{3^{6}}{3^{3}}=3^{2}$
d. $\frac{3^{6}}{3^{3}}=3^{3}$

$$
\begin{aligned}
& 3^{2}=9 \\
& 3^{3}=27 \\
& 3^{4}=81 \\
& 3^{5}=243 \\
& 3^{6}=729 \\
& 3^{7}=2,187 \\
& 3^{8}=6,561
\end{aligned}
$$

